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Key issues for RFP.

1. Improve confinement ⇐  MST and others
– reduce magnetic stochasticity ( B̃ / B ~ 1%)
– j(r)-control, single-helicity dynamo (?)

2. Efficient current sustainment
– test Oscillating Field Current Drive ⇐  MST
– Alfvén or other high efficiency RF?

3. Control low-n resistive shell instabilities ⇐  modified RFX (?)
– feedback, flow, rotating shells?
– common to all high β configurations

4. Develop large wall loading capability
– choice to realize compact reactor
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Edge electrostatic current injection controls m=0 modes.

• Sawtooth cycle period increases with co-injection
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Bigger & longer reduction in fluctuations with refined PPCD.
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Dramatic peaking of Te(r) during PPCD.

•  Single-point Thomson ensembles
   in standard and PPCD plasmas:

Biewer et al.
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Long wavelength density fluctuations decrease globally.

• Density profile ne(r) measured with 11-chord FIR interferometry
   – correlation with edge magnetic fluctuations

⇒  toroidal mode number n-resolved density fluctuation profiles

Lanier et al.
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Improved confinement in RFPs correlates with “broadband” 
mode reduction.

• Consistent with tearing from
   locally resonant modes.

• “Quasi-single-helicity” observed
   in all RFPs

    – in MST: typically n=6
       (inner most mode)

    – PPCD & spontaneous
       “sawtooth-free” transitions

5 10 15 20 25
Time (ms)

0

1

2

3

4

(%)

b̃
B
rms

PPCD

0

0.5

1

1.5

1 3 5 7 9 11 13 15

(%)

Toroidal mode, n

normal (sawtooth)

“Quasi-SH”

best confinement

QSH

MST

What’s role of QSH in 
broadband mode
reduction? (especially in 
spontaneous transitions)

Stoneking et al, PP 4, 1632 (1997).

b̃n

sawtoothing

lowest
˜ b 



MST’s auxiliary system & diagnostic additions underway.

1. Improve confinement via j(r)-control
– lower hybrid
– electron Bernstein wave (?)
– steady-state PPCD & high frequency OFCD

2. Current sustainment via Oscillating Field Current Drive (OFCD)

3. Multi-mode rotating magnetic perturbations

4. Diagnostics:
• multi-point Thomson scattering
• Rutherford scattering (H-DNB)
• CHERS (He-DNB)
• MSE (He-DNB)
• HIBP (collab. w/ RPI)
• FIR polarimetry (collab. w/ UCLA)



Lower hybrid combline antenna installed, tests begun.
Thomas et al.
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• Antenna installed inside MST
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Driven 800 MHz wave detected in MST plasma.
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Electron Bernstein wave could better localize current drive.
Forest, Harvey

GENRAY and  CQL3D calculated
single ray propagation and damping.

poloidal launch angle 
determines current 
drive direction.

cyclotron nature of wave
could provide better

localization



Prototype OFCD oscillator probes relaxation physics.
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Summary.

• Impact of edge resonant m=0 magnetic fluctuations on plasma behavior and
confinement becoming clearer.

• Maximum confinement and beta correlates with biggest and longest lasting
magnetic fluctuation reductions (both core and edge resonant):
– strong peaking of temperature profile
–  “universal” improvement (e.g., electrostatic fluctuations reduced as well)

• MST’s auxiliary system and diagnostic additions underway:
– exciting knobs to manipulate the plasma
– better diagnosis, especially profiles which are changing in time
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